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Dislocation-mediated melting: The one-component plasma limit
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The melting parametdr,, of a classical one-component plasma is estimated using a relation between the
melting temperature, density, shear modulus, and a crystal coordination number that follows from our model of
dislocation-mediated melting. We obtdif,= 172+ 35, in good agreement with the results of numerous Monte
Carlo calculations.
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I. INTRODUCTION path-integral MC simulations of the OCPL6] give I',
=175. Hence, numerous MC studies suggest that=170
The classical one-component plasii@CP) is an ideal- —180 for the classical bcc OCP.
ized system of mobile ions of char@ee, number density, In this paper we calculat®',, using a melting relation

and temperaturg, immersed in a neutralizing background of obtained from our model of dislocation-mediated melting
uniform charge density- Zne. The OCP is realized in nature [17,18. Before proceeding with the calculation bf,, we
only at the enormous densities occuring in white dwarfs andriefly recapitulate the main ideas and assumptions of our
neutron stars. The thermodynamics of the classical OCP imelting model. As first proposed by Mdtt9], dislocations
completely described in terms of the dimensionless couplingre assumed to be the basic degrees of freedom underlying
parametef1] the melting transition. Dislocation interactions beyond a dis-
tance of order of the mean dislocation separation are as-
_ (Ze)® 1 sumed negligible because of screening, and steric interac-
akgT’ @ tions are ignored. Accordingly, dislocations are taken to be
noninteracting and therefore uncorrelated, and are modeled
wherea= (3/4mn)*2is the Wigner-Seitz radius. In the quan- as lines lying along the nearest-neighbor links of the lattice.
tum regime, one more parametarpr T, is needed to char- The links coincide with the shortest perfect-dislocation Bur-
acterize the system. Melting of a classical OCP occurs at gers vectors, which have magnitudeThe dislocation con-
fixed valuel', of the plasma coupling parameter. WhEn  figurations(Brownian, self-avoiding, open, closed, etare
>I",, an OCP is either a glag®] or it has a bcc crystal parametrized by a single parametgr 1, in terms of which
structure, provided that it is subject to only hydrostatic stressthe mean dislocation length is given Bi)=4qgb/(q—1).
The evaluation of’,,, for melting from the bcc structure has In addition to g, the partition function depends on the
been the subject of extensive Monte Ca&C) calculations  temperature-dependent effective dislocation line tension, that
[3—16] employing the Ewald potential, which yields data is, the energy cost to create unit length of dislocation at
pertinent to an infinite system from simulations using only atemperaturd. The effective line tension vanishes at the criti-
finite number of particles confined to a cubic computationalcal temperaturég T, = ob/ In(z—1). Herez is the coordina-
cell with periodic boundary conditions. By fitting simple tion number of the lattice and, which we discuss in more
functional forms, guided by theory, to the measured excesgdetail below, is thep-dependent self-energy per unit length,
potential energy per particle for both liquid and solid phases being the dislocation density. Dislocations proliferate as
of the OCP, it is possible to obtain the Helmholtz free energyT., is approached from below, while at temperatures just
as a function ofl". The intersection of the liquid and solid aboveT,, the partition function diverges, an indication that a
free-energy curves gives the value of the melting parametesew phase appears. $g, corresponds to a phase transition,
[ In their pioneering study3], Brush, Sahlin, and Teller namely melting, and we identif§ ., with the melting tem-
observed melting in a 32-particle systemlg{~125. Sub-  peratureT,,. A full defect theory of melting, a version of
sequently Hansef#] and Pollock and Hansgl®] followed  which is presently availablg20], would have to include the
with an improved calculation and fourdd,,=155+10. Van  effects of both dislocations and disclinations. In our model
Horn [6] used the empirical Lindemann melting criterion to we ignore the effects of disclinations under the assumption
obtainT",= 170+ 10. Other MC studies resulted in the fol- that they will produce only small changes of the order of
lowing values ofl",,: 144[7], 168+4 [8], 178+1[9], 180  10% to the melting temperature.
+1 [10], 178[11], 172[12], and 173[13]. Values of very Crystal anisotropy was assumed to be a small correction
similar magnitude have been obtained in MC simulations ofo our model of dislocation-mediated melting. We recently
a strongly coupled screened Coulorfdukawa system in  reconsidered anisotropy and found that it introduces a cor-
the limit of zero screening: 17[114] and 171.915]. Recent  rection to our melting relation which we estimate to be only
10%. Interestingly, the same correction factor to the melting
temperature vanishes precisely when the crystal loses its
*Email address: BURAKOV@LANL.GOV structural stability, as expected. We also found that taking
"Email address: DEAN@LANL.GOV into account anisotropy explicitly in our melting relation
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would lead to thet®° behavior of the melting temperature 1 2 \G(To)owd Tr) 2
for small &, consistent with Kleinert's finding off ,,~ &% KeTm=—7= 3 rln — = ($)In 5 .
[20], as discussed in more detail below. v 7In(z—-1) 4b“p(Tp)

Under the assumption that dislocation strain fields are
screened away at distances beyond the mean dislocation
spacing 21], the self-energy per unit length in an anisotropic Here the factor (% »/2)/(1— v) results from averaging over
cubic crystal is ¢, cose=b-1, vys is the Wigner-Seitz volume\
=b3/v\ysis a geometric factor characterizing the lattice, and
p(T,,) is the dislocation density at melt. Note that the factor
In(z—1) explicitly accounts for the influence of crystal struc-
ture on melting. This melting relation plus experimental data
on over half the elements in the Periodic Table give
_ _ _ - b%p(T,)=0.61+0.20[18].
where R~ 1/\/5 is the mean distance between dislocations, |, Ref. [17] we applied Eq.(4) (with (¢)=1) to the
[ is the unit dislocation sense vectbr= b/|b|, v is the Pois-  zero-pressure elemental data for more than half of the peri-
son ratio, andx accounts for nonlinear effects in the dislo- odic table and found that it is accurate to 17%. Here we
cation core. Kraer's[23] cubic equation for the shear modu- investigate the validity of this relation in the OCP limit by
lus of macroscopic polycrystals defin€s and thereforey, using it to calculate the value &f,,, which is then compared
as a function of the single crystal elastic constants. We mugb the available MC data.
have »— 1 when the crystal anisotropy ratio Calculation ofT",, from Eq. (4) requires that we make the
reasonable assumption thait?/b%p(T,) is a pressure-
independent constant. Then we can estimate this quantity for
_ 117 Cr 3) the OCP from zero-pressure data on the alkali metals. It is
2Cyy ' well known that the deviations of alkali-metal Fermi surfaces
from perfect spheres are of order 1% or less, clear evidence
L . . hat the valence electrons are very nearly free. In addition,
equals one, i.e., in a perfectly isotropic crystal. The general,e ratig of ionic radius to half the interatomic distance in-
form of the function¢ is unknown. However, we estimated creases from 0.4 in Li to only 0.7 in C@8], hence the
the mean value of using expressions for the line energies oy o115y hetween alkali ions is small, and so to a good ap-
of (110 and(111) screw dislocations in anisotropic cubic o imation the ions are effectively point charges. With re-
materlals[zz] in conjunction with the Kraer cubic equation spect to many of its physical propertiéhird-order elastic
for G and single crystal data on 31 elemef®¢] and found  .,ngtants are one exceptid@9]), an alkali metal can be
¢=0.90*=0.09. This anisotropy correction shifts the critical regarded as a bcc lattice of point positive ions in a uniform

dislocation density downward from 0617 determined un- background of free electrons, i.e., a one-component plasma.
der the assumption of isotropy, to O6Z.

The line energies of botfil10) and(111) screw disloca-
tions have\¢ behavior near the origin that gives way to a

slow variation of¢> above¢~0.2[25]. In our melting model Let us first discuss the temperature dependenci&anfd

T is proportional to the average ef in the dislocation ,  _ since their values to be used in Ed) should be those

ensemble near melt, hende,~(¢). Approximately equal  atT—T,_ not the measured values at room temperature. The

amounts of edge and screw dislocations are present in thﬁ(ed-pressure ratio of Wigner-Seitz volumesTat and T

ensoesmble, and iipeged £) behaves likedsee(€) then T — g js equal to ¥ BT,,, whereg is the volume expansivity.

~ & as'gﬂ_o andTm_ will _be insensitive to¢ for §=0.2. ¢ p=0, B is typically of order 105 K™%, and melting

The vanlshmg ofT,, with ¢ is _to be expected becau_se of the temperatures are at most about 4000 Kpgg; changes by

loss of cubic crystal stability whery,=cq,. Kleinert's oy g few percent betweehi=0 andT,,. We can therefore

three-dimensional lattice model of defect meltif@p] pre- always use room-temperature values fgys.

dicts very similar behavior, specificallj,~£°°. In contrast tav\ys, the dependence @ on T is not nec-
Many authors[26] have successfully used the IN¢l/  essarily weak. ItsT dependence involves two characteristic

form for o, as in Eq.(2), so we chose it as well, even though (e mperatures, namely the Debye temperaflige and the

it hz_is not been thoroughly mve_stlgated theoretically. Carefuhqelting temperatureG is always monotonically decreasing

der|v_at|ons[27] have been carried out only.for nearly paral- ith T, and is nonlinear fof<Tp, and linear fromTp to

lel dislocations. However, the In(d)y form is expected 10 1 = An accurate representation 6{(T) at fixed density is

hold in a three-dimensional ensemble of nondirected dislogchieved by ignoring the low-temperature nonlinearity and

cations provided the mean dislocation length is much IargeépproximatingS(T) as a linear function of the reduced tem-

than the mean distance between dislocations, thaL!)s/E peratureT/T,, with the correct values(0) atT=0 [30],
>1. In our model the In(}) self-energy leads to a disloca-

tion free energyF=—a;pInp—ay,p—azp™, and theplinp T
term results in a first-order melting transition. G(T)ze(o)( 1— 7_)_ (5)
We obtain the following melting relation: Tm

1-w»(b-1)2 Gb? ooe aR
U:Tvﬂ(ﬁ(cllaClZ!CM’b’l) In o/’ (2)

Il. ANALYSIS OF ALKALI METAL DATA
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This straight-line representation turns out to be quite accu- TABLE I. The elastic constants and shear modulus, in units of
rate: the maximum deviation of the data from the corre-(4m/3)"%(Ze)*n*".
sponding fitted lines is-11% for the 22 metals analyzed in

[30]. r (C1—c1))/2 Caa & GOoP
Hence, as follows from Eqg4) and (5), o 0.02454 01827 01343 0.0930
o 800 0.024(2)  0.174(1) 0.138(11) 0.089(12)
1 w21y G(O)”WS, 400 0.025(2) 0.167(1)  0.150(12)  0.087(11)
N YIn[a?/4b?p(T,)] 1—v 2 A4wkgTyIn7 300 0.025(3)  0.157(4) 0.159(19)  0.084(19)
6) 200 0.019(3) 0.12(1) 0.158(28)  0.064(28)

where we have takern= 8. For our analysis, we use Li, Na,

K, Rb, a_nd Cs, and omit Fr for_vyhich _Iattice co_nstant data ares i fact the Voigt(upped bound[34] on the shear modulus,
not available. For the remaining five alkali metalsws  and therefore does not give the correct valugpfvhich is

=a%2, where the values of the lattice constanare taken nown to always lie between the Voigt and the Reuss
from [31]. The values of botiG(0) andTy, come from[32]. (jowep) [35] bounds.

We take the values of from Ref.[30] for Na, K, and Rb, An analysis by Kimer[23] shows that successively nar-

and for Li and Cs we usg=0.23, which is the average rower bounds can be placed on the shear modulus as the

value over the 22 metals analyzed 80]. The corresponding  degree of disorder in grain orientation increases. In the limit

values ofv are taken from Re{32]. Averaging over the five  of perfect disorder, the shear modulus can be obtained as the

alkali metals gives root of a cubic equation with coefficients that depend on the
single-crystal elastic constants. In the cas%?Of the OCP,

_ where the shear modulus is down by a factonof from the

0.38%=0.052, ™ bulk modulus, the cubic equation reduces to a quadratic with

only one positive real root,

1
N@)In[a?/4b%p(T )]

where the error is the root-mean-square deviation.

1
= —[Cast \C4+ 12(C1— : 11
Ill. OCP MELTING PARAMETER T, G=glca Vet 1211 Cra)Cal (1)

We first consider the Poisson ratio in the OCP limit. In|n Table | we present the values of the elastic constants from
terms of G and the bulk modulusB, the Poisson ratio is Ref.[33] and the correct values @&°°F as calculated from
given by[32] Eqg. (11). The value of¢ for the OCP, as given in Table I,
0.158+0.028 (this value embraces all five values éfin

= ﬂ (8  Table ), is consistent with the average value that we
2(3B+G) calculated for five alkali metals Li, Na, K, Rb, and Cs,
. 0.157+0.044, where the error is the root-mean-square devia-
We approximateB°“” by the bulk modulus of the electron a

gas since the negative electrostafitadelung contribution Let us again assume a linear temperature dependence of
never exceeds 10% of the bulk modulus of the gas. Theyocp o, 1o 11

variation of B9 with density changes from a®° depen-
dence in the nonrelativistic case tm4° dependence in the 7
extreme relativistic limit, whereas the OCP shear modulus GOCP(F):GOCP(“’)<1— f)- (12
always varies a®*. Hence, in a nonrelativistic ga&/G
~nY3>1, sov—1/2, as seen from E@8). AlthoughB and Fitting the values in Table I to this linear formula, and taking
G both vary am*? in the extreme relativistic limit, we find into account their uncertainties, we obt486]
B/G~100® %" so againB/G>1 andv~1/2.

Hence, as follows from Eqs(1), (4), and (7) with » 7=36.7£30.4. (13

=1/2, th P melti ter is gi
2, the OCP melting parameter is given by Finally, we evaluate the OCP melting paramdigrin the

2 (4713)Y3(Ze)2n* framework of melting as a dislocation-mediated phase tran-
I',=(0.385-0.05287 In 7= och , (9 sition. As follows from Eqgs.(9), (12), and (13) with the
3 GOy value of GO%(x) from Table I,
where we have usedg,s=1/n. ,=172+35. (14

The bcc OCP elastic constants were recently obtained by
Ogata and Ichimaru, using MC simulatiof&3] as functions  This value is in good agreement with the available data from
of I'. However, the formula for the effective shear modulusMC simulations, albeit with 20% uncertainty. We note that
used in Ref[33], most (= 2/3) of this uncertainty comes from the uncertainty
in the value ofy.

The OCP value of the parameterdefined in Eq.(5) is
simply related toy andT’,,

_ C1y—Cppt3Cy

Go=——p (10
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=T ,,. (150  [37] revealed that the melting relatiqd) is in good agree-
ment with data up to pressures100—200 GPa. Here we
From Egs.(13) and(14) we gety°“P=0.21+0.18, which is  have demonstrated that E¢) also holds in a classical OCP.

consistent with the value of at p~0, namely 0.2330]. These successful comparisons of E4). with experimental
data and MC calculations suggest, but of course do not by
IV. CONCLUDING REMARKS themselves prove, that melting is a dislocation-mediated

. ) phase transition.
Our central value fof'\,,, that is 172, agrees well with the

more recent MC results. Two-thirds of the 20% uncertainty
in this value is attributable to the error in the MC-calculated
temperature dependence of the OCP single-crystal elastic We wish to thank T. Goldman and R. R. Silbar for very
constants. valuable discussions during the preparation of this work, and
Our previous study of the melting curves of 24 elementsM. M. Brisudovafor her help with a least-squares fitting.
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