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Dislocation-mediated melting: The one-component plasma limit
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The melting parameterGm of a classical one-component plasma is estimated using a relation between the
melting temperature, density, shear modulus, and a crystal coordination number that follows from our model of
dislocation-mediated melting. We obtainGm5172635, in good agreement with the results of numerous Monte
Carlo calculations.
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I. INTRODUCTION

The classical one-component plasma~OCP! is an ideal-
ized system of mobile ions of chargeZe, number densityn,
and temperatureT, immersed in a neutralizing background
uniform charge density2Zne. The OCP is realized in natur
only at the enormous densities occuring in white dwarfs a
neutron stars. The thermodynamics of the classical OC
completely described in terms of the dimensionless coup
parameter@1#

G5
~Ze!2

akBT
, ~1!

wherea5(3/4pn)1/3 is the Wigner-Seitz radius. In the quan
tum regime, one more parameter,a or T, is needed to char
acterize the system. Melting of a classical OCP occurs
fixed valueGm of the plasma coupling parameter. WhenG
.Gm , an OCP is either a glass@2# or it has a bcc crysta
structure, provided that it is subject to only hydrostatic stre
The evaluation ofGm for melting from the bcc structure ha
been the subject of extensive Monte Carlo~MC! calculations
@3–16# employing the Ewald potential, which yields da
pertinent to an infinite system from simulations using only
finite number of particles confined to a cubic computatio
cell with periodic boundary conditions. By fitting simpl
functional forms, guided by theory, to the measured exc
potential energy per particle for both liquid and solid pha
of the OCP, it is possible to obtain the Helmholtz free ene
as a function ofG. The intersection of the liquid and soli
free-energy curves gives the value of the melting param
Gm . In their pioneering study@3#, Brush, Sahlin, and Telle
observed melting in a 32-particle system atGm'125. Sub-
sequently Hansen@4# and Pollock and Hansen@5# followed
with an improved calculation and foundGm5155610. Van
Horn @6# used the empirical Lindemann melting criterion
obtain Gm5170610. Other MC studies resulted in the fo
lowing values ofGm : 144 @7#, 16864 @8#, 17861 @9#, 180
61 @10#, 178 @11#, 172 @12#, and 173@13#. Values of very
similar magnitude have been obtained in MC simulations
a strongly coupled screened Coulomb~Yukawa! system in
the limit of zero screening: 171@14# and 171.8@15#. Recent
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path-integral MC simulations of the OCP@16# give Gm
5175. Hence, numerous MC studies suggest thatGm.170
2180 for the classical bcc OCP.

In this paper we calculateGm using a melting relation
obtained from our model of dislocation-mediated melti
@17,18#. Before proceeding with the calculation ofGm , we
briefly recapitulate the main ideas and assumptions of
melting model. As first proposed by Mott@19#, dislocations
are assumed to be the basic degrees of freedom under
the melting transition. Dislocation interactions beyond a d
tance of order of the mean dislocation separation are
sumed negligible because of screening, and steric inte
tions are ignored. Accordingly, dislocations are taken to
noninteracting and therefore uncorrelated, and are mod
as lines lying along the nearest-neighbor links of the latti
The links coincide with the shortest perfect-dislocation B
gers vectors, which have magnitudeb. The dislocation con-
figurations~Brownian, self-avoiding, open, closed, etc.! are
parametrized by a single parameterq.1, in terms of which
the mean dislocation length is given by^L&54qb/(q21).
In addition to q, the partition function depends on th
temperature-dependent effective dislocation line tension,
is, the energy cost to create unit length of dislocation
temperatureT. The effective line tension vanishes at the cri
cal temperaturekBTcr5sb/ ln(z21). Herez is the coordina-
tion number of the lattice ands, which we discuss in more
detail below, is ther-dependent self-energy per unit lengt
r being the dislocation density. Dislocations proliferate
Tcr is approached from below, while at temperatures j
aboveTcr the partition function diverges, an indication that
new phase appears. SoTcr corresponds to a phase transitio
namely melting, and we identifyTcr with the melting tem-
peratureTm . A full defect theory of melting, a version o
which is presently available@20#, would have to include the
effects of both dislocations and disclinations. In our mod
we ignore the effects of disclinations under the assump
that they will produce only small changes of the order
10% to the melting temperature.

Crystal anisotropy was assumed to be a small correc
to our model of dislocation-mediated melting. We recen
reconsidered anisotropy and found that it introduces a c
rection to our melting relation which we estimate to be on
10%. Interestingly, the same correction factor to the melt
temperature vanishes precisely when the crystal loses
structural stability, as expected. We also found that tak
into account anisotropy explicitly in our melting relatio
©2001 The American Physical Society02-1
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would lead to thej0.5 behavior of the melting temperatur
for small j, consistent with Kleinert’s finding ofTm;j0.6

@20#, as discussed in more detail below.
Under the assumption that dislocation strain fields

screened away at distances beyond the mean disloc
spacing@21#, the self-energy per unit length in an anisotrop
cubic crystal is

s5
12n~ b̂• l̂ !2

12n

Gb2

4p
f~c11,c12,c44,b̂, l̂ ! lnS aR

b D , ~2!

where 2R'1/Ar is the mean distance between dislocatio
l̂ is the unit dislocation sense vector,b̂5b/ubu, n is the Pois-
son ratio, anda accounts for nonlinear effects in the disl
cation core. Kro¨ner’s@23# cubic equation for the shear modu
lus of macroscopic polycrystals definesG, and thereforen,
as a function of the single crystal elastic constants. We m
havef→1 when the crystal anisotropy ratio

j5
c112c12

2c44
, ~3!

equals one, i.e., in a perfectly isotropic crystal. The gene
form of the functionf is unknown. However, we estimate
the mean value off using expressions for the line energi
of ^110& and ^111& screw dislocations in anisotropic cub
materials@22# in conjunction with the Kro¨ner cubic equation
for G and single crystal data on 31 elements@24# and found
f50.9060.09. This anisotropy correction shifts the critic
dislocation density downward from 0.61b22, determined un-
der the assumption of isotropy, to 0.53b22.

The line energies of botĥ110& and^111& screw disloca-
tions haveAj behavior near the origin that gives way to
slow variation off abovej'0.2 @25#. In our melting model
Tm is proportional to the average ofs in the dislocation
ensemble near melt, henceTm;^f&. Approximately equal
amounts of edge and screw dislocations are present in
ensemble, and iffedge(j) behaves likefscrew(j) then Tm
;j0.5 as j→0 andTm will be insensitive toj for j*0.2.
The vanishing ofTm with j is to be expected because of th
loss of cubic crystal stability whenc115c12. Kleinert’s
three-dimensional lattice model of defect melting@20# pre-
dicts very similar behavior, specificallyTm;j0.6.

Many authors@26# have successfully used the ln(1/r)
form for s, as in Eq.~2!, so we chose it as well, even thoug
it has not been thoroughly investigated theoretically. Care
derivations@27# have been carried out only for nearly para
lel dislocations. However, the ln(1/r) form is expected to
hold in a three-dimensional ensemble of nondirected di
cations provided the mean dislocation length is much lar
than the mean distance between dislocations, that is,^L&Ar
@1. In our model the ln(1/r) self-energy leads to a disloca
tion free energyF52a1r ln r2a2r2a3r

a4, and ther ln r
term results in a first-order melting transition.

We obtain the following melting relation:
06740
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kBTm5
12n/2

12n

lG~Tm!vWS~Tm!

8p ln~z21!
^f& lnS a2

4b2r~Tm!
D .

~4!

Here the factor (12n/2)/(12n) results from averaging ove
w, cosw5b̂• l̂ , vWS is the Wigner-Seitz volume,l
[b3/vWS is a geometric factor characterizing the lattice, a
r(Tm) is the dislocation density at melt. Note that the fac
ln(z21) explicitly accounts for the influence of crystal stru
ture on melting. This melting relation plus experimental da
on over half the elements in the Periodic Table gi
b2r(Tm)50.6160.20 @18#.

In Ref. @17# we applied Eq.~4! ~with ^f&[1) to the
zero-pressure elemental data for more than half of the p
odic table and found that it is accurate to 17%. Here
investigate the validity of this relation in the OCP limit b
using it to calculate the value ofGm , which is then compared
to the available MC data.

Calculation ofGm from Eq.~4! requires that we make th
reasonable assumption thata2/b2r(Tm) is a pressure-
independent constant. Then we can estimate this quantity
the OCP from zero-pressure data on the alkali metals. I
well known that the deviations of alkali-metal Fermi surfac
from perfect spheres are of order 1% or less, clear evide
that the valence electrons are very nearly free. In addit
the ratio of ionic radius to half the interatomic distance
creases from 0.4 in Li to only 0.7 in Cs@28#, hence the
overlap between alkali ions is small, and so to a good
proximation the ions are effectively point charges. With r
spect to many of its physical properties~third-order elastic
constants are one exception@29#!, an alkali metal can be
regarded as a bcc lattice of point positive ions in a unifo
background of free electrons, i.e., a one-component plas

II. ANALYSIS OF ALKALI METAL DATA

Let us first discuss the temperature dependencies ofG and
vWS, since their values to be used in Eq.~4! should be those
at T5Tm , not the measured values at room temperature.
fixed-pressure ratio of Wigner-Seitz volumes atTm and T
50 is equal to 11bTm , whereb is the volume expansivity.
At p50, b is typically of order 1025 K21, and melting
temperatures are at most about 4000 K, sovWS changes by
only a few percent betweenT50 andTm . We can therefore
always use room-temperature values forvWS.

In contrast tovWS, the dependence ofG on T is not nec-
essarily weak. ItsT dependence involves two characteris
temperatures, namely the Debye temperatureTD and the
melting temperature.G is always monotonically decreasin
with T, and is nonlinear forT&TD and linear fromTD to
Tm . An accurate representation ofG(T) at fixed density is
achieved by ignoring the low-temperature nonlinearity a
approximatingG(T) as a linear function of the reduced tem
peratureT/Tm with the correct valueG(0) at T50 @30#,

G~T!5G~0!S 12g
T

Tm
D . ~5!
2-2
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This straight-line representation turns out to be quite ac
rate: the maximum deviation of the data from the cor
sponding fitted lines is;11% for the 22 metals analyzed i
@30#.

Hence, as follows from Eqs.~4! and ~5!,

1

l^f& ln@a2/4b2r~Tm!#
5

12n/2

12n

12g

2

G~0!vWS

4pkBTm ln7
,

~6!

where we have takenz58. For our analysis, we use Li, Na
K, Rb, and Cs, and omit Fr for which lattice constant data
not available. For the remaining five alkali metals,vWS
5a3/2, where the values of the lattice constanta are taken
from @31#. The values of bothG(0) andTm come from@32#.
We take the values ofg from Ref. @30# for Na, K, and Rb,
and for Li and Cs we useg50.23, which is the averag
value over the 22 metals analyzed in@30#. The corresponding
values ofn are taken from Ref.@32#. Averaging over the five
alkali metals gives

1

l^f& ln@a2/4b2r~Tm!#
50.38560.052, ~7!

where the error is the root-mean-square deviation.

III. OCP MELTING PARAMETER Gm

We first consider the Poisson ratio in the OCP limit.
terms of G and the bulk modulus,B, the Poisson ratio is
given by @32#

n5
3B22G

2~3B1G!
. ~8!

We approximateBOCP by the bulk modulus of the electro
gas since the negative electrostatic~Madelung! contribution
never exceeds 10% of the bulk modulus of the gas. T
variation of BOCP with density changes from an5/3 depen-
dence in the nonrelativistic case to an4/3 dependence in the
extreme relativistic limit, whereas the OCP shear modu
always varies asn4/3. Hence, in a nonrelativistic gas,B/G
;n1/3@1, son→1/2, as seen from Eq.~8!. AlthoughB and
G both vary asn4/3 in the extreme relativistic limit, we find
B/G'1000Z22/3, so againB/G@1 andn'1/2.

Hence, as follows from Eqs.~1!, ~4!, and ~7! with n
51/2, the OCP melting parameter is given by

Gm5~0.38560.052!8p ln 7
2

3

~4p/3!1/3~Ze!2n4/3

GOCP~Gm!
, ~9!

where we have usedvWS51/n.
The bcc OCP elastic constants were recently obtained

Ogata and Ichimaru, using MC simulations@33# as functions
of G. However, the formula for the effective shear modu
used in Ref.@33#,

Geff5
c112c1213c44

5
, ~10!
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is in fact the Voigt~upper! bound@34# on the shear modulus
and therefore does not give the correct value ofG, which is
known to always lie between the Voigt and the Reu
~lower! @35# bounds.

An analysis by Kro¨ner @23# shows that successively na
rower bounds can be placed on the shear modulus as
degree of disorder in grain orientation increases. In the li
of perfect disorder, the shear modulus can be obtained as
root of a cubic equation with coefficients that depend on
single-crystal elastic constants. In the case of the O
where the shear modulus is down by a factor ofn1/3 from the
bulk modulus, the cubic equation reduces to a quadratic w
only one positive real root,

G5
1

6
@c441Ac44

2 112~c112c12!c44#. ~11!

In Table I we present the values of the elastic constants f
Ref. @33# and the correct values ofGOCP as calculated from
Eq. ~11!. The value ofj for the OCP, as given in Table I
0.15860.028 ~this value embraces all five values ofj in
Table I!, is consistent with the average value ofj that we
calculated for five alkali metals Li, Na, K, Rb, and C
0.15760.044, where the error is the root-mean-square de
tion.

Let us again assume a linear temperature dependenc
GOCP on T}1/G,

GOCP~G!5GOCP~`!S 12
h

G D . ~12!

Fitting the values in Table I to this linear formula, and takin
into account their uncertainties, we obtain@36#

h536.7630.4. ~13!

Finally, we evaluate the OCP melting parameterGm in the
framework of melting as a dislocation-mediated phase tr
sition. As follows from Eqs.~9!, ~12!, and ~13! with the
value ofGOCP(`) from Table I,

Gm5172635. ~14!

This value is in good agreement with the available data fr
MC simulations, albeit with 20% uncertainty. We note th
most ('2/3) of this uncertainty comes from the uncertain
in the value ofh.

The OCP value of the parameterg defined in Eq.~5! is
simply related toh andGm ,

TABLE I. The elastic constants and shear modulus, in units
(4p/3)1/3(Ze)2n4/3.

G (c112c12)/2 c44 j GOCP

` 0.02454 0.1827 0.1343 0.0930
800 0.024(2) 0.174(1) 0.138(11) 0.089(12)
400 0.025(2) 0.167(1) 0.150(12) 0.087(11)
300 0.025(3) 0.157(4) 0.159(19) 0.084(19)
200 0.019(3) 0.12(1) 0.158(28) 0.064(28)
2-3
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h[gOCPGm . ~15!

From Eqs.~13! and~14! we getgOCP50.2160.18, which is
consistent with the value ofg at p;0, namely 0.23@30#.

IV. CONCLUDING REMARKS

Our central value forGm , that is 172, agrees well with th
more recent MC results. Two-thirds of the 20% uncertai
in this value is attributable to the error in the MC-calculat
temperature dependence of the OCP single-crystal ela
constants.

Our previous study of the melting curves of 24 eleme
J.

A

v.

. E

B
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@37# revealed that the melting relation~4! is in good agree-
ment with data up to pressures;1002200 GPa. Here we
have demonstrated that Eq.~4! also holds in a classical OCP
These successful comparisons of Eq.~4! with experimental
data and MC calculations suggest, but of course do not
themselves prove, that melting is a dislocation-media
phase transition.

ACKNOWLEDGMENTS

We wish to thank T. Goldman and R. R. Silbar for ve
valuable discussions during the preparation of this work, a
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